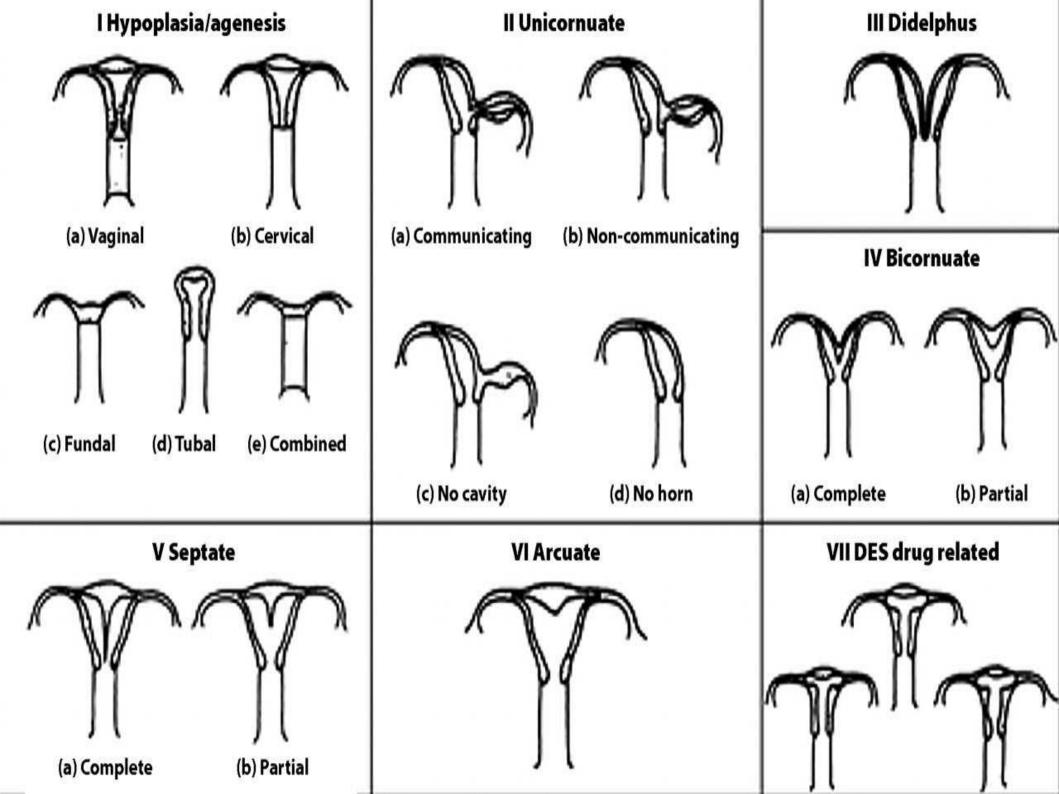
The pattern of pregnancy loss in women with congenital uterine anomalies and recurrent miscarriage

Reproductive BioMedicine Online (2010) 20, 416–422


Presented by: Kitty Huang April 13th, 2010

- Recurrent Miscarriage (RM):
 - incidence rate: 1% of population
 - Congenital uterine anomalies (CUA):
 - in approximately 17% of the RM population (Li et al., et al., 2008).
 - treatment of septate, and possibly the bicornuate uterus?
 - pathogenesis?

- Reports to date:
 - focus:
 - the reproductive outcomes of individual CUA
 - investigated the effect of surgical intervention on pregnancy outcomes

- 3 main limitations of reports to date:
- (i) they have not all used accurate investigations (e.g. combined hysteroscopy/laparoscopy or 3-D ultrasound) to diagnose and classify CUA
- (ii) they have not all studied women with RM, in which the link between CUA and pregnancy loss is more established
- (iii) they have not examined the details of pregnancy loss, such as the timing of miscarriage or gestational findings on ultrasound.

- The aim of this study:
 - to accurately identify women with different CUA and RM
 - compare the pattern of pregnancy loss with a control group of women with unexplained RM.

Materials and methods - Recruitment

- All the women included in the study attended the Sheffield Recurrent Miscarriage Clinic (Jessop Hospital, Sheffield, UK).
- Recurrent miscarriage: 3 or > consecutive pregnancy losses prior to 24 weeks of gestation.

Materials and methods -Recruitment

All the women underwent investigations according to an established protocol (Li et al., 2002) included:

maternal and paternal karyotyping

extensive prothrombotic studies and antiphospholipid antibody screen

thyroid function and thyroid antibody tests

 androgen profile (total serum testosterone, sex hormonebinding globulin and free androgen index)

 day-2 FŠH, LH and oestradiol, LH-timed Pipelle endometrial biopsy

screening for CUA

 A total of 665 women who completed the full investigation protocol were included in the analysis.

Materials and methods - Diagnosis of CUA

- A combined 2D-US and hysterosalpingography (HSG) approach.
 - + finding:
 - HSC/LSC procedure: to allow for a direct visualisation of internal and external uterine contour
 - This provided a definitive diagnosis and classification of each anomaly.

Materials and methods - Study and control group

- Women with a specific CUA (diagnosed by HSC/LSC) and no other identifiable cause of RM formed the study group (n = 56).
- Women whose investigations were normal for all identifiable causes of RM (unexplained RM) formed the control group (n = 107).

Materials and methods – Pregnancy outcomes

- (i) biochemical miscarriage: miscarriage before week 6 of gestation or in the absence of ultrasound evidence of an intrauterine pregnancy
- (ii) early first-trimester miscarriage: miscarriage after ultrasound evidence of an intrauterine gestational sac with or without a fetal pole, but prior to the presence of a fetal heart

Materials and methods - Pregnancy outcomes

- (iii) late first-trimester miscarriage: miscarriage in the first-trimester after the detection of a fetal heart
- (iv) second-trimester miscarriage: miscarriage between
 14 and 24 weeks
- (v) stillbirth: non-viable pregnancy after 24 weeks
- (vi) ectopic pregnancy
- ◆ (vii) live birth

Materials and methods - Pregnancy outcomes

- Pregnancies in which patients had received medical treatment (e.g. LMW heparin, acetyl-salicylic acid, steroids) or surgery (e.g. septotomy, Strassman's metroplasty, cervical cerclage) were excluded to avoid bias in the analysis.
- 251 pregnancies in the study group
- 630 pregnancies in the control group

Results - Prevalence

- ◆ 665 women were screened for CUA
- ◆ Based on combined 2D-US and HSG imaging, the prevalence of CUA in this RM population was 13.1% (n = 87).
- 55 women successfully completed combined diagnostic HSC/LSC.
 - ◆ 52.7% (n = 29) septate
 - ◆ 32.7% (n = 18) arcuate
 - ◆ 10.9% (n = 6) bicornuate
 - ◆ 1.8% (n = 1) didelphys

Results - Accuracy of 2D-US and HSG

Table 1 Congenital uterine anomalies correctly detected and classified by two-dimensional ultrasound and hysterosalpingography.

Type of uterine anomaly diagnosed by combined hysteroscopy/laparoscopy	n	2D-US Anomaly detected	Correct classification	HSG Anomaly detected	Correct classification
Arcuate	18	5 (28)	0 (0)	15 (83)	7 (39)
Septate	29	8 (28)	6 (21)	23 (79)	17 (59)
Bicornuate	6	1 (17)	1 (17)	6 (100)	6 (100)
Didelphys	1	1 (100)	1 (100)	1 (100)	0 (0)
Unicornuate	1	0 (0)	0 (0)	1 (100)	1 (100)
Total.	55	15 (27)	8 (15)	46 (84)	31 (56)

Values are number (%).

Results - Population characteristics

Table 2 Patient characteristics.

Patient group	n	Age (years)	Height (metres)	Weight (kg)	BMI (kg/m²)	Cycle length (days)	Pregnancies (n)
Unexplained RM	107	31.5 ± 5.0	1.64 ± 0.1	68.1 ± 12.8	25.6 ± 5.0	28.4 ± 2.4	5.9 ± 2.3
Arcuate	18	32.9 ± 4.2	1.66 ± 0.1	68.9 ± 10.8	25.0 ± 3.5	32.5 ± 17.0 ^a	6.1 ± 2.3
Septate	29	31.7 ± 5.2	1.61 ± 0.1	67.4 ± 18.0	25.4 ± 6.2	30.7 ± 12.1 ^a	5.3 ± 2.1
Bicornuate	6	31.7 ± 1.9	1.64 ± 0.1	63.8 ± 10.3	22.5 ± 3.3	28.3 ± 0.5	6.2 ± 1.9
Didelphys	1	32.5 ± 0.7	1.69 ± 0.0	85.9 ± 27.1	30.1 ± 10.0	27.0 ± 1.4	6.0 ± 1.4
Unicornuate	1	21	1.6	60.3	23.6	30	7.0

Values presented as mean \pm SD.

BMI = body mass index; RM = recurrent miscarriage.

Comparison to the 'unexplained RM' group. P > 0.05 for equality of means.

^aP < 0.01 for equality of variance.

Results - Pregnancy outcome

Table 3 Pregnancy outcomes in patients with different congenital uterine anomalies.

Patient group	n	First-trimester miscarriage	Second-trimester miscarriage	Live birth	Ectopic	Stillbirth
Unexplained RM	630	431 (68.4)	21 (3.3)	152 (24.1)	19 (3.0)	7 (1.1)
Arcuate	101	74 (73.3) ^a	1 (1.0) ^a	24 (23.8) ^a	2 (2.0) ^a	0
Septate	106	77 (72.6) ^a	14 (13.2) ^b	10 (9.4) ^b	5 (4.7) ^a	0
Bicornuate	29	21 (72.4) ^a	4 (13.8) ^c	4 (13.8) ^c	0 (0.0)	0
Didelphys	10	8 (80.0) ^a	1 (10.0) ^a	0 (0.0)	1 (10.0) ^a	0
Unicornuate	5	3 (60.0) ^a	0 (0.0)	1 (20.0) ^a	1 (20.0) ^a	0

Values are number (%).

RM = recurrent miscarriage.

Comparison to the 'unexplained RM' group (2 × 2 contingency tables).

^aNot statistically significant.

 $^{^{}b}P < 0.001$.

[°]P < 0.05.

Results - 2nd-trimester pregnancy loss

Table 3 Pregnancy outcomes in patients with different congenital uterine anomalies.

Patient group	n	First-trimester miscarriage	Second-trimester miscarriage	Live birth	Ectopic	Stillbirth
Unexplained RM	630	431 (68.4)	21 (3.3)	152 (24.1)	19 (3.0)	7 (1.1)
Arcuate	101	74 (73.3) ^a	1 (1.0) ^a	24 (23.8) ^a	2 (2.0) ^a	0
Septate	106	77 (72.6) ^a	14 (13.2) ^b	10 (9.4) ^b	5 (4.7) ^a	0
Bicornuate	29	21 (72.4) ^a	4 (13.8) ^c	4 (13.8) ^c	0 (0.0)	0
Didelphys	10	8 (80.0) ^a	1 (10.0) ^a	0 (0.0)	1 (10.0) ^a	0
Unicornuate	5	3 (60.0) ^a	0 (0.0)	1 (20.0) ^a	1 (20.0) ^a	0

Values are number (%).

RM = recurrent miscarriage.

Comparison to the 'unexplained RM' group (2 × 2 contingency tables).

^aNot statistically significant.

 $^{^{}b}P < 0.001$.

[°]P < 0.05.

Results - Pattern of pregnancy loss in 1sttrimester miscarriages

Table 4 Pattern of pregnancy loss in women with first-trimester miscarriages and different congenital uterine anomalies.

Patient group	n	First-trimester miscarriages				
		Biochemical	Early	Late		
Unexplained RM	263	80 (30.4)	128 (48.7)	55 (20.9)		
Arcuate	42	4 (9.5) ^a	23 (54.8) ^b	15 (35.7) ^c		
Septate	45	5 (11.1) ^a	26 (57.8) ^b	14 (31.1) ^c		
Bicornuate	18	2 (11.1) ^c	9 (50.0) ^b	7 (38.9) ^c		

Values are number (%).

Comparison to the 'unexplained RM' group $(2 \times 2 \text{ contingency table})$.

 $^{^{}a}P < 0.01$.

^bNot statistically significant.

 $^{^{\}circ}P < 0.05$.

Discussion - Prevalence

- ◆ The prevalence of CUA observed in this RM population (13.1%) is slightly < the estimated prevalence in a recent review (16.7%) (Saravelos et al., 2008).</p>
- The commonest CUA in this population was the septate uterus and not the arcuate uterus as previously estimated.
 - the screening process of <u>combined 2D-US and HSG is</u> not sensitive in detecting the less pronounced arcuate
 - combined HSC/LSC is not as accurate as 3D-US in detecting arguate uteri

Discussion - Accuracy of 2-D US and HSG

- ◆ 2D-US detected approximately <u>27%</u> (15/55) of established CUA and correctly classified about <u>15%</u> (8/55).
- ◆ HSG detected <u>84%</u> (46/55) of established CUA and correctly classified <u>56%</u> (31/55).
- HSG is therefore better in detecting and classifying CUA, but its performance remains relatively poor.

Discussion - Accuracy of 2-D US and HSG

- ◆ The sensitivity of 2D-US is surprisingly low, markedly < than that estimated in the recent review (27% VS. 56%)</p>
- ◆ The sensitivity of HSG is similar to the previously reported estimated (84% VS. 78%)
- Small septa were missed on 2D-US and that more focus was given to the HSG during the screening process.
- Both 2D-US and HSG are not appropriate for diagnostic purposes and should only be used as adjuncts for screening.

Discussion - Population details

- The characteristics of women with CUA compared with women with unexplained RM were similar in terms of age, weight, height, BMI and # of pregnancies.
- ◆ There was a difference in the variance of cycle length between women with an arcuate or septate uterus compared with women with unexplained RM.
 - ◆ To study the <u>endometrial morphology</u> of arcuate and septate uteri in order to ascertain possible differences and abnormalities.

Discussion - Pregnancy outcome

- CUA have been widely reported to cause an adverse effect on pregnancy outcome.
- Pooled results suggest that the septate uterus has the worst pregnancy outcome, while the arcuate uterus has the most favourable outcome (Grimbizis et al., 2001).
 - there are some individual studies that report an opposite trend (Acie´n, 1993; Heinonen et al., 1982).

Discussion - Pregnancy outcome

- ◆ The results of this study suggest that the miscarriage rate ↑ according to the embryological sequence and subsequent severity of the CUA.
 - women with an arcuate uterus (the less malformed uterus) have the <u>lowest rates of miscarriage</u>, which are, in fact, similar to those of women with <u>unexplained</u> RM (74.3% versus 71.7%).
 - women with a septate or bicornuate uterus have significantly \(\) miscarriage rates (85.8% and 86.2%)

- ◆ Studies had proved that CUA have been associated with cervical incompetence, pre-term delivery, malpresentations and ↑ C/S rates.
 - CUA are therefore associated with 2nd-trimester losses and not 1st-trimester losses??
- There are very few reports that differentiate between 1st and 2nd-trimester miscarriages and that compare women with different CUA.

- Woelfer et al. (2001) were the first to specifically compare early versus late miscarriage in women with different CUA.
 - subseptate uteri caused more 1st-trimester miscarriages than normal uteri, while arcuate uteri caused more 2nd-trimester miscarriages.
 - BUT, small # of miscarriages for women with CUA (n = 47) and no woman had a history of RM.

- Proctor and Haney (2003) who found a septate uterus in 35/35 patients with recurrent 1sttrimester miscarriage and suspected CUA.
 - However, the majority of their patients were screened for CUA by HSG alone, which may be less sensitive in detecting the less pronounced arcuate deformity (Saravelos et al., 2008).

- ◆ Woelfer et al. (2001), the data suggest that women with a septate or bicornuate uterus have an approximate 3 x ↑ of 2nd-trimester miscarriages.
 - may be related to <u>altered intrauterine</u> <u>pressures</u>, and <u>subsequent myometrial and</u> <u>cervical dysfunction</u>, which may not be of significance in the less malformed arcuate uterus.

Discussion - Pattern of pregnancy loss in 1st-trimester miscarriages

- This is the first study to examine the pattern of 1st-trimester pregnancy loss in women with CUA.
- Women with an arcuate, septate or bicornuate uterus have a similar pattern of pregnancy loss in 1st-trimester miscarriages.
 - <u>significantly</u> ↓ <u>biochemical miscarriages</u> (<6 weeks) compared with women with unexplained RM (10.5% versus 30.4%)
 - CUA are not associated with early implantation failure

Discussion - Pattern of pregnancy loss in 1st-trimester miscarriages

- This is of particular significance in the septate uterus, which seems to behave similarly to the arcuate and bicornuate uteri.
 - This implies that either implantation onto the septum does not occur readily, or if it does, it is not associated with a very early fetal loss.
 - Implantation onto the septum results in a possible subfertility (Homer et al., 2000) and
 - when the embryo is implanted onto the lateral walls of the septate uterus.

Discussion - Pattern of pregnancy loss in 1st-trimester miscarriages

- ◆ The mechanism does not cause ↑ 2nd-trimester miscarriages in the arcuate uterus.
 - The pathology is less severe in the arcuate uterus
 - Different mechanism causing 2nd-trimester losses in the septate or bicornuate uterus
- Surgical correction of the arcuate uterus does not seem indicated.
 - However, there is a need for studies to assess the potential reproductive benefit of correcting the arcuate uterus.

Conclusion

- ◆ These findings suggest that women with a septate or bicornuate uterus, but not those with an arcuate uterus, have significantly increased rates of second-trimester miscarriages compared with women with unexplained RM.
 - any woman with RM presenting with a history of a second-trimester pregnancy loss should increase the suspicion of a CUA.

Conclusion

Women with an arcuate, septate or bicornuate uterus have a significantly altered pattern of 1sttrimester pregnancy loss compared with women with unexplained RM.

- ◆ a ↓ rate of biochemical pregnancy losses and an ↑ rate of late 1st-trimester losses.
- the pregnancies of women with RM and CUA are not associated with early implantation failure and are compromised at a more advanced gestational age compared with pregnancies of women with unexplained RM.