Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage

Human Reproduction, Vol.25, No.1 pp. 52-58, 2010

Presenter:洪雅珊 2010-01-19

Introduction

- Recurrent miscarriage
 - [©] ≥3 consecutive pregnancy losses , before GA 20wks
 - [☉] Prevalence: 1-3%
 - \odot > 50% \rightarrow unexplained
 - © Cause significant psychosocial morbidity

Introduction

- Immune system in pregnant women
 - Involved immune modulation to protect a fetal semi-allograft from rejection. (Medawar, 1953)
 - Role of maternal lymphocyte profiles and trophoblast MHC expression. (Sacks el at., 1999)
 - The immune system was not universally suppressed, but rather shifted to favour type 2 (Ab-mediated) over type 1 (cell-mediated) responses. (Wegmann et al., 1993)
 - Constraint type 1 response may cause miscarriage.(Raghupathy, 1997)
 - Type 2 shift for normal pregnancy involving P and P-induced binding factor and tryptophan catabolizer IDO.(Roth et al., 1996)

Introduction

- ✓ Interest one of the certain elements in maternal innate immune system \rightarrow NK cells
 - WK cells are strikingly suppressed in normal early pregnancy. (Szereres-Barthos and Wegmann, 1996)
 - NK cell are not suppressed (or are indeed activated) could cause a type 1 shift and miscarriage in some WOMEN . (Chaouat, 2008)

NK cells

- ✓ Innate lymphocytes , with CD3⁻CD56⁺
- CD56+Bright NK subset : CD16-, high IL-2 affinity, produce cytokines
- CD56 Dim NK subset: CA16+, moderate IL-2 affinity , orchestrate NK cytotoxicity
- **CD69** : MHC- Recognizing , activating receptors
 - Present in the peripheral blood and uterine tissue
 →regular trophoblast invasion (Moffett-King,2002)
 - Is dominant uterine immune cell in pregnancy (Vince and Johnson, 2000)
 - CD56^{+Bright} predominant in uterus, only 10% of peripheral blood population.

Relationship between NK and RM

- Women with RM have high NK cytotoxicity (Aoki, 1995; Shakhar, 2003)
- NK levels >18% should be considered extremely high . (Beer et al.,1996)
- ✓ Relationship between the CD56+10 m NK subset and RM
 →few papers reported (Beer, 1996; Emmer, 2000)
- ✓ Difference in NK levels between RM and control women
 → no studies
 - Relationship between CD 69 and RM
 - WK cells from women with RM stimulated in vitro expressed more CD69 than NK cells from controls . (Ntrivalas et al., 2001)
 - Women with RM appear to have increased CD69 expression .
 (Prado-Drayer et al., 2008)

Peripheral NK cell analysis

- $\checkmark Normal NK range for women of reproductive age \rightarrow unclear$
- A large NK range for female : 5.33-20.25% (Bisset, 2004)
- Biopsychosocial variables may influence NK levels
 (higher)
 - 🙂 Men
 - Oute stress
 - Exercise
 - ☺ ovarian stimulation for IVF
 - © Menstrual cycle (luteal phase)

Aim of this study

 Determine whether there was a real difference in preconceptual peripheral NK parameters between women with RM and healthy control women

Ascertain which parameters best differentiated these 2 cohorts

Determine what NK levels should be considered high

Materials and Methods

- 104 non-pregnant women with RM (61 nulliparous , 43 parous)
- **33 healthy control women** (14 nulliparous, 19 parous)
- Isod samples in the mid-luteal phase
- Baseline analysis
 - 🙂 Age
 - No. Of pregnancies
 - Of consecutive miscarriage
 - Of live births
 - 🙂 BMI
 - Past medical and surgical hx and medications

- ✓ RM+ : positive to ≥1 RM screening tests
- RM- : negative to all screening tests or had been treated for an abnormality and continued to miscarry .
 - RM screening test
 - Male and female karyotype
 - [☉] Hormone test(FSH, LH,T,SHBG)
 - Diabetes screen (insulin, BSL, HbA1c)
 - Thrombophilia screen
 - © Sperm test (DNA fragmentation)
 - Anatomical test(sono and HyCoSy/HSG/ HSC)

- ✓ % of white cell count and lymphocyte %
- Surface marker analysis (use peripheral blood)
 - ⓒ CD45-PerCP
 - ☺ CD3-APC
 - CD19-APC
 - ☺ CD56-PE
 - ☺ CD69-FITC
 - CD14-PE
 - ☺ CD16-FITC

MK subset determination (use flow cytometry)

- © Collected 2000NK cells (CD3-, CD56+)
- 10000NK cells for measurement of activation using CD69
- total NK cells, CD56^{+Dim} subset, activated CD69⁺ CD56^{+Dim} subset→expressed as % and absolute count

Result analysis

- GraphPad Prism software
- \odot Mann-Whitney \rightarrow continuous variables
- \bigcirc Fisher's exact test \rightarrow Dichotomous variables

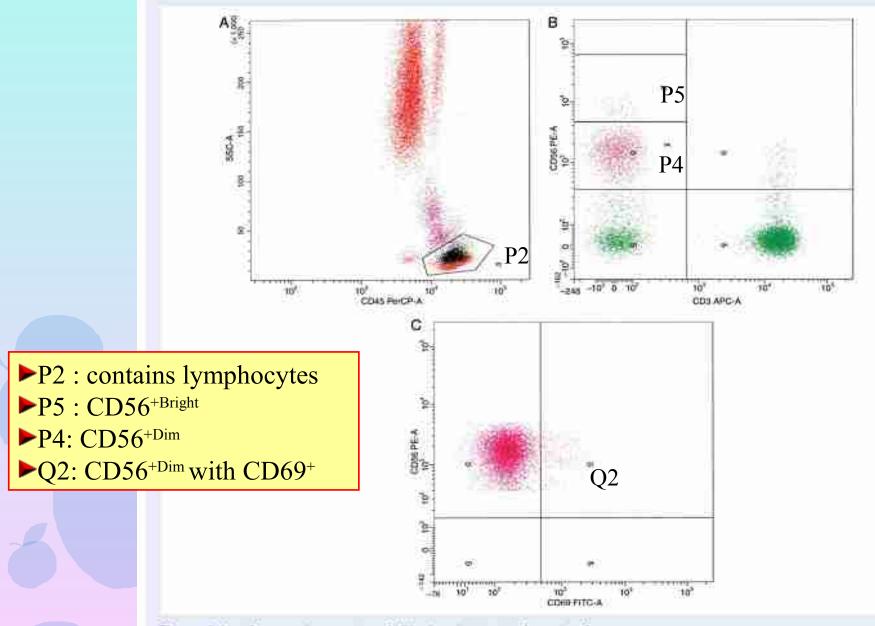


Figure 1 identification and enumeration of NK cells and subsets by four-colour flow cytometry.

(A) CD45 is measured against SSE (side source)-Height P2 contains lymphotytes, (B) Cells contained within P2 are displayed on a plot of CD3 versus CD56 expression. Cells registive for CD3 and positive for CD36 are NK cells. Those with bright CD56 expression (the CD56^{+3-gre} subset) lie in the region P5, and those with dim CD36 expression (the CD56^{+3-gre} subset) lie in the region P5, and those with dim CD36 expression (the CD56^{+3-gre} subset) lie in the region P5, and those with dim CD36 expression (the CD56^{+3-gre} subset) lie within P4. (C) An example of the measurement of CD6P expression on ^{CD34+DM} NK cells. Those that is in the upper right quadrant (Q2) are positive for Cd49.

Results of baseline analysis

	Control	RM		
Age	20-47 (mean=34.4)	25-49(mean=36.9)		
No.of pregnancies		5.34 (range= 5-17)		
Miscarriages	≥2 miscarriage →mean=0.303	4.4 (range= 3-15)		
Live births	1.18			

No significant difference between RM and control

age; BMI; no.of cigarettes /day ; units of alcohol consumed /wk

Higher prevalence of autoimmune disease in RM cohort

Grave's disease (3); Hashimoto's disease (3); SLE + APA (4);
 scleroderma (3); psoriasis (2); Sjogren's syndrome (1).

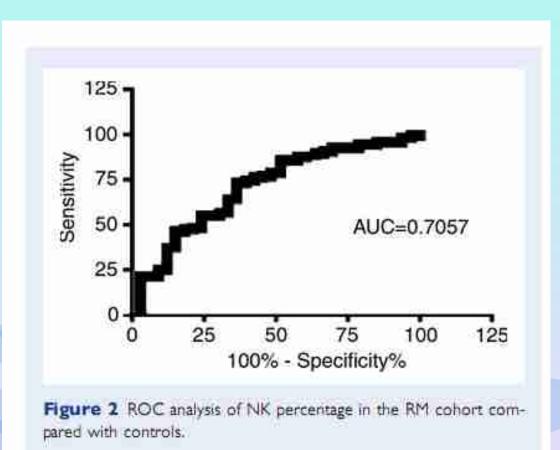

Cohort	Variable	NK%	NK Conc	Dim NK%	Dim NK Conc	Bright:dim	CD69 Dim NK%	CD69 Dim NK Conc
All RM	n Mean Median Range SD	104 11.4 10.6 3.08-27.5 4.87	104 0.231 0.21 0.060.7 0.117	104 94,7 95.6 81.2-99.1 3.85	104 0.221 0.2 0.05-0.69 11.7	104 0.0604 0.05 0.01 0.22 0.461	90 2.77 2.38 0.65-38 3.85	90 0.00536 0.0043 0.00135-0.0154 0.00322
Controls	0496	33 8.80 5.75 3.53-34.0 5.37	33 0.200 0.17 0.06-0.73 0.129	33 92.5 94.3 69.7-99.7 6.41	33 0.189 0.16 0.05-0.73 0.130	33 0.0912 0.06 0.01-0.45 0.0886	33 2.62 2.29 0.58-8.93 1.67	33 0.00418 0.0037 0.00097-0.0138 0.00262
P (Mann-	Whitney)	0.0004	0.0897	0.0630	0.0584	0.0365	0.453	0.0527

Table I Summary of NK parameter alterations and significance in the all RM cohort compared with controls

Total NK percentage (NK%) = NK concentration/total peripheral lymphocytes × 100. Total NK concentration (NK conc) = NK count × 10⁺/₁CD56^{+Dm} cell percentage (% Dim NK) = CD56^{+Dm} NK concentration/NK concentration × 100. CD56^{+Dm} NK concentration (Dim NK Conc) = CD56^{+Dm} NK count × 10⁺/₁ CD56^{+Bm/}/CD56^{+Dm} ratio (Bright:dim) = CD56^{+Bm/} NK concentration/CD56^{+Dm} concentration. Percentage of activated (CD60⁺) CD56^{+Dm} NK cells (%CD69 Dim) = CD69⁺CD56^{+Dm} concentration/CD56^{+Dm} concent

NK% was significantly elevated in the RM cohort Bright:dim ratio was significantly lower

Other variables \rightarrow not reach statistical significance.

NK% >18% differentiated the cohorts with a sensitivity of 12.5%, specificity of 97.0% and likelihood ratio of 4.12
Women without live births vs with live birth
☺ NK% → no significant difference

2

Cohort	Variables	NK%	NK Conc	Dim NK%	Dim NK Conc	Bright:dim	CD69 Dim NK%	CD69 Dim NK Conc
Controls	n	33	33	33	33	33	33	33
	Mean	8.80	0.200	92.5	0.189	0.0912	2.62	0.00418
	Median	5.75	0.17	94.3	0.16	0.06	2.29	0.0037
	Range	3.53–34.0	0.06-0.73	69.7–99.7	0.05-0.73	0.01-0.45	0.58-8.93	0.00097-0.0138
	SD	5.37	0.129	6.41	0.130	0.0886	1.67	0.00262
RM ⁺ Cohort	n	46	46	46	46	46	40	40
	Mean	11.9	0.237	95.2	0.229	0.544	2.75	0.00616
	Median	10.8	0.225	96.6	0.215	0.0400	2.47	0.00509
	Range	4.17-27.5	0.06-0.7	83.0-98.7	0.05-0.69	0.01-0.21	0.76-6.13	0.00135-0.0154
	SD	5.38	0.128	3.50	0.128	0.0398	1.18	0.00390
P (Mann-Wh versus contro	itney) RMT	0.0008	00969	0.0375	0.0736	0.0216	0.311	0.0209

Table II Summary of NK parameter alterations and significance in the RM⁺ and RM⁻ cohorts compared with controls

- In RM cohort, prevalence of anticardiolipn antibody : 40.9%
- \checkmark RM(+) with ACAs vs control
 - Significant higher → NK%, NK conc , Dim NK%, DimNK conc.
 - \bigcirc Significant lower \rightarrow Bright : Dim ratio
 - RM(+) without ACAs vs control
 - Only NK% was significant higher

Cohort	Variables	NK%	NK Conc	Dim NK%	Dim NK Conc	Bright:dim	CD69 Dim NK%	CD69 Dim NK Conc
Controls	(m)	33	33	33	33	33	33	33
Complete A and	Mean	8.80	0.200	92.5	0.189	0.0912	2.62	0.00418
	Median	5.75	0.17	94.3	0.16	0.06	2.29	0.0037
	Range	3.53-34.0	0.06-0.73	69.7-99.7	0.05-0.73	0.01-0.45	0.58-8.93	0.00097-0.0138
	SD	5.37	0.129	6.41	0.130	0.0886	1.67	0.00262
RM ⁻ cohort	() (5)	58	58	58	58	58	50	50
	Mean	(11.4)	0.225	94.3	21.5	0.0652	2.78	0.00471
	Median	9.96	0.251	95.2	0.185	0.05	2.33	0.00397
	Range	3.08-22.0	0.06-0.54	81.2-99.1	0.050-0.530	0.01-0.22	0.65-8.38	0.00144-0.0125
	SD	4.43	0.108	4.09	0.1084	0.0595	1.68	0.00241
P (Mann-Wh versus contro		0.0025	Q138	0.188	0.107	0.129	0.713	0.225

Table II Summary of NK parameter alterations and significance in the RM⁺ and RM⁻ cohorts compared with controls

Total NK percentage (NK%) = NK concentration/total peripheral lymphocytes × 100. Total NK concentration (NK conc) = NK count × 10^{*}/L CD56^{+Dm} cell percentage (% Dim NK) = CD56^{+Dm} NK concentration/NK concentration × 100. CD56^{+Dm} NK concentration (Dim NK Conc) = CD56^{+Dm} NK count × 10^{*}/L CD56^{+Dm} concentration × 100. CD56^{+Dm} NK concentration (Dim NK Conc) = CD56^{+Dm} NK count × 10^{*}/L CD56^{+Dm} concentration × 100. CD56^{+Dm} natio (Brightidim) = CD56^{+Dm} NK concentration/CD56^{+Dm} concentration. Percentage of activated (CD60⁺) CD56^{+Dm} NK cells(%CD69 Dim) = CD69⁺CD56^{+Dm} concentration/CD56^{+Dm} concentration/CD56^{+Dm} concentration/NK concentration/CD56^{+Dm} concentration/NK cells(%CD69 Dim) = CD69⁺CD56^{+Dm} concentration/CD56^{+Dm} concentration/CD56^{+Dm} concentration/NK cells(%CD69 Dim) = CD69⁺CD56^{+Dm} concentration/NK cells(%CD69^{+Dm} concentration/NK cells(%CD69^{+Dm} concentration/NK cells(%CD69^{+Dm} cel

Only NK % was significantly increased in the RM⁻ group

- ✓ Women with RM have alter peripheral blood NK parameters (increased no. and/or levels of activation) → support previous reports
- Women in RM⁻ cohort , had no cause found in RM but significantly raised NK% .
 - Using NK% to define high NK level
 - High specificity(97%) but low sensitivity(12.5%) in women with RM
 - NK testing would be an ineffective way to identify women with RM from the general population
 - But effectively identify a subpopulation of women with known RM who may benefit from immunosuppressive therapy .

- All parameters analysed was consistent with a shift in the peripheral blood NK activity in RM .
- Peripheral shift in the NK subtypes and activation might be an indication of a genuine mechansim for immune dysfunction causing miscarriage.
 - [☉] Blood NK vs uterine NK
 - ut NK partly derived from blood recruitment.
 - Ut NK CD56^{+bright}→benign, produce cytokine, essential for normal pregnancy;
 - ✓ Ut NK CD56^{+Dim} → cytotoxic , increased in RM
 - ✓ Hypothesis : peripheral blood NK activity↑→ CD56^{+Dim}↑→ recruitment of CD56^{+Dim} in the uterus ↑
 - Mechansim for miscarriage is still unclear !!

Peripheral NK cell over-activity

- An independent marker for RM
- ✓ Shakhar et al.,2003
 - Primary miscarriage have significant increased NK% and conc.
 - Secondary miscarriage had NK% and conc of an intermiediate level.
 - Our study
 - Increased NK% in women with no previous live birth→ but not statistically significant.

RM with ACAs (+)

- Had significant higher NK% and conc in this study
- Consistent with previous reports (Beer 1996; Konova, 2004)
- Mechanism for miscarriage in ACA(+)
 - Out solely thrombotic
 - Direct toxic effect on trophoblast and immue dysregulation
 - Higher NK% \rightarrow further potential immune mechanism for poor placentation and miscarriage
 - Current treatment
 - Heparin + aspirin
 - If NK activity increased →might benefit from immunosupressive therapy (e.g. Prednisone)

Immune suppressive therapy in RM

- Still controversial
- There is no proven benefit for unexplained RM with taking IVIG or leucocyte infusion (LIT). (Porter. 2006)
- Several small studies : these therapies may benefit subsets of RM pts with immunological abnormalities.
- ✓ IVIG and LIT → reduce NK levels or cytotoxicity, and with higher live birth rates
 - Prednisolone
 - Can suppress NK cell acitivity (Thum, 2008)
 - © Effective in women with RM (Quenby, 2003)
 - Cheaper, easier to take, not require blood screening
 - Be caution the side effects on mother and fetus.

- It is not known what link exists between uterine and peripheral blood NK cells.
- But uterine NK play an important role in the early implantation.
- A pilot study (Fay et al., 2007)
 A strong correlation between blood and ut NK cells , particularly when levels were high .
 - A possible mechanism : \uparrow number, \uparrow cytotoxic CD56^{+ Dim} subtypes and \uparrow activated cell (CD69+) in the blood \rightarrow \uparrow such cells recruitment into the uterus \rightarrow a hostile ut enviroment for implantation

An alternative hypothesis

- ☑ Immune system is complex and works as a network → It's unlikely that a single cell type is the sole cause of miscarriage in RM women
- NK activity is just one measure of overall immune function
- May be a syndrome with various immune factors (NK cell in blood and uterus, ACAs, thryoid Ab, etc) increase the likelihood of an immune reproductive disorder

Conclusion

- This study is one of the largest and most detailed flow cytometric analyses of preconceptual peripheral blood NK cells in women with RM.
 - Women with RM have significantly increased NK activity.
- NK% is the parameter that best differentiated test and control groups.
 - By a simple blood test, 12.5% of women with RM were found to have an NK% > 18% compared with only 3% of the control population .

Conclusion

- It is not yet proven that high NK levels signal a pathological mechansim predicting miscarriage.
- Nor is it known how NK levels come to be raised, how long they remain high, or what long-term health consequences might be.
 - We believe that randomized controlled studies are indicated to assess whether women with such high NK levels would benefit from immune therapy .